Potent neuroprotection after stroke afforded by a double-knot spider-venom peptide that inhibits acid-sensing ion channel 1a.

نویسندگان

  • Irène R Chassagnon
  • Claudia A McCarthy
  • Yanni K-Y Chin
  • Sandy S Pineda
  • Angelo Keramidas
  • Mehdi Mobli
  • Vi Pham
  • T Michael De Silva
  • Joseph W Lynch
  • Robert E Widdop
  • Lachlan D Rash
  • Glenn F King
چکیده

Stroke is the second-leading cause of death worldwide, yet there are no drugs available to protect the brain from stroke-induced neuronal injury. Acid-sensing ion channel 1a (ASIC1a) is the primary acid sensor in mammalian brain and a key mediator of acidosis-induced neuronal damage following cerebral ischemia. Genetic ablation and selective pharmacologic inhibition of ASIC1a reduces neuronal death following ischemic stroke in rodents. Here, we demonstrate that Hi1a, a disulfide-rich spider venom peptide, is highly neuroprotective in a focal model of ischemic stroke. Nuclear magnetic resonance structural studies reveal that Hi1a comprises two homologous inhibitor cystine knot domains separated by a short, structurally well-defined linker. In contrast with known ASIC1a inhibitors, Hi1a incompletely inhibits ASIC1a activation in a pH-independent and slowly reversible manner. Whole-cell, macropatch, and single-channel electrophysiological recordings indicate that Hi1a binds to and stabilizes the closed state of the channel, thereby impeding the transition into a conducting state. Intracerebroventricular administration to rats of a single small dose of Hi1a (2 ng/kg) up to 8 h after stroke induction by occlusion of the middle cerebral artery markedly reduced infarct size, and this correlated with improved neurological and motor function, as well as with preservation of neuronal architecture. Thus, Hi1a is a powerful pharmacological tool for probing the role of ASIC1a in acid-mediated neuronal injury and various neurological disorders, and a promising lead for the development of therapeutics to protect the brain from ischemic injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Juruin: an antifungal peptide from the venom of the Amazonian Pink Toe spider, Avicularia juruensis, which contains the inhibitory cystine knot motif

The aim of this study was to screen the venom of the theraposid spider Avicularia juruensis for the identification of antimicrobial peptides (AMPs) which could be further used as prototypes for drug development. Eleven AMPs, named juruentoxins, with molecular weight ranging from 3.5 to 4.5 kDa, were identified by mass spectrometry after the soluble venom was separated by high performance liquid...

متن کامل

A dynamic pharmacophore drives the interaction between Psalmotoxin-1 and the putative drug target acid-sensing ion channel 1a.

Acid-sensing ion channel 1a (ASIC1a) is a primary acid sensor in the peripheral and central nervous system. It has been implicated as a novel therapeutic target for a broad range of pathophysiological conditions including pain, ischemic stroke, depression, and autoimmune diseases such as multiple sclerosis. The only known selective blocker of ASIC1a is π-TRTX-Pc1a (PcTx1), a disulfide-rich 40-r...

متن کامل

Molecular dynamics and functional studies define a hot spot of crystal contacts essential for PcTx1 inhibition of acid-sensing ion channel 1a.

BACKGROUND AND PURPOSE The spider-venom peptide PcTx1 is the most potent and selective inhibitor of acid-sensing ion channel (ASIC) 1a. It has centrally acting analgesic activity and is neuroprotective in rodent models of ischaemic stroke. Understanding the molecular details of the PcTx1 : ASIC1a interaction should facilitate development of therapeutically useful ASIC1a modulators. Previously, ...

متن کامل

Acid-sensing ion channel 1a regulates the survival of nucleus pulposus cells in the acidic environment of degenerated intervertebral discs

Objective(s): Activation of acid-sensing ion channel 1a (ASIC1a) is responsible for tissue injury caused by acidosis in nervous systems. But its physiological and pathological roles in nucleus pulposus cells (NPCs) are unclear. The aim of this study is to investigate whether ASIC1a regulates the survival of NPCs in the acidic environment of degenerated discs. Materials and Methods: NPCs were i...

متن کامل

A Hot Spot for the Interaction of Gating Modifier Toxins with Voltage-Dependent Ion Channels

The gating modifier toxins are a large family of protein toxins that modify either activation or inactivation of voltage-gated ion channels. omega-Aga-IVA is a gating modifier toxin from spider venom that inhibits voltage-gated Ca(2+) channels by shifting activation to more depolarized voltages. We identified two Glu residues near the COOH-terminal edge of S3 in the alpha(1A) Ca(2+) channel (on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 114 14  شماره 

صفحات  -

تاریخ انتشار 2017